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Abstract

The nonparametric multiscale platelet algorithms presented in this paper, unlike traditional wavelet-based meth-

ods, are both well suited to photon-limited medical imaging applications involving Poisson data and capable of bet-

ter approximating edge contours. This paper introduces platelets, localized functions at various scales, locations,

and orientations that produce piecewise linear image approximations, and a new multiscale image decomposition

based on these functions. Platelets are well suited for approximating images consisting of smooth regions separated

by smooth boundaries. For smoothness measured in certain Hölder classes, it is shown that the error of m-term

platelet approximations can decay significantly faster than that of m-term approximations in terms of sinusoids,

wavelets, or wedgelets. This suggests that platelets may outperform existing techniques for image denoising and

reconstruction. Fast, platelet-based, maximum penalized likelihood methods for photon-limited image denoising,

deblurring and tomographic reconstruction problems are developed. Because platelet decompositions of Poisson

distributed images are tractable and computationally efficient, existing image reconstruction methods based on

expectation-maximization type algorithms can be easily enhanced with platelet techniques. Experimental results

suggest that platelet-based methods can outperform standard reconstruction methods currently in use in confocal

microscopy, image restoration, and emission tomography.
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I. PHOTON-L IMITED MEDICAL IMAGING

Many medical imaging modalities involve the detection of (light or higher energy) photons, and of-

ten the random nature of photon emission and detection is the dominant source of noise in imaging

systems. Such cases are referred to asphoton-limitedimaging applications, since the relatively small

number of detected photons is the factor limiting the signal-to-noise ratio. These applications include

Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT), Con-

focal Microscopy, and Infrared (IR) imaging [1–3]. The data collected by these imaging systems are

usually assumed to obey a spatial Poisson distribution involving a two-dimensional intensity image that

describes the probability of photon emissions at different locations in space. The mean and variance of a

Poisson process are equal to the intensity. The intensity/mean is the “signal” of interest and the variabil-

ity of the data about the mean can be interpreted as “noise.” Thus, as the intensity varies spatially as a

function of anatomy, structure, or function, so does the signal-to-noise ratio. In this sense it could be said

that the noise in photon-limited imaging is signal-dependent.

A. Statistical Methods for Restoration and Reconstruction

Statistical methods for photon-limited image deblurring and reconstruction are especially effective

since they can account for the special properties of the Poisson distribution. The maximum likelihood

estimator (MLE) is the most popular statistical tool and is routinely applied in scientific and clinical

practice. In most cases the MLE must be computed numerically, and the most common method for

this purpose is the expectation-maximization (EM) algorithm [4–6] (also known as the Richardson-Lucy

algorithm in the context of Poisson data [7]). EM algorithms have been widely studied and applied and

provide a very simple means to compute the MLE. However the maximum likelihood criterion is not

always useful. For example, in PET and SPECT the resulting system of equations is very ill-posed and

often the MLE is extremely noisy (highly variable). The EM algorithm may even diverge.

To combat this problem the maximum likelihood criterion can be replaced with maximum penalized

likelihood criteria [8–11]. These criteria are constructed by adding a penalizing function to the Pois-

son log-likelihood function. The penalizing function measures the smoothness of the intensity image
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and assigns weaker penalties to smoother intensities and stronger penalties to more irregular intensities.

Assumptions of smoothness are not unreasonable in practice. For example, radioactive pharmaceuticals

diffuse smoothly in regions of homogeneous tissue, resulting in smoothly varying intensities within or-

gans. Basic anatomical and physiological considerations suggest that extremely irregular intensities are

unnatural.

The penalizing function can be specified by an ad hoc smoothness measure, a Bayesian prior distri-

bution for the intensity image [8, 9], or a complexity measure [12, 13]. Smoothness measures include

simple quadratic functions that measure the similarity between the intensity values of neighboring pix-

els, as well as non-quadratic measures that better preserve edges. Similar penalty functions result from

Markov Random Field (MRF) priors. Complexity measures are usually associated with an expansion of

the intensity image with respect to a set of basis functions (e.g.Fourier or wavelet) and count the number

of terms retained in a truncated or pruned series [14, 15]; the more terms (basis functions) used to repre-

sent the image, the higher the complexity measure. An intensity that maximizes a penalized likelihood

criterion is called a maximum penalized likelihood estimator (MPLE). Many algorithms (e.g. EM algo-

rithms or close relatives) have been developed to compute MPLEs under various observation models and

penalization schemes [16].

An alternative to MPLE-based methods is the “stopped” EM-MLE solution [17]. The idea here is to

stop the iterations of the EM-MLE algorithm at a suitable point, before it converges to the undesirable

MLE or diverges. The stopped EM-MLE algorithm implicitly produces a smooth solution and is perhaps

the most widely applied approach in practice. The popularity of this procedure is probably due to its

simplicity and the availability of very fast EM-type algorithms for the basic maximum likelihood crite-

rion. This paper hopes to convince the reader that MPLEs based on complexity penalized multiscale (or

“multiresolution”) image representations not only compare favorably with EM-MLE reconstructions in

terms of computational speed, but also can provide reconstructions that are significantly superior to the

best stopped EM-MLE solution.
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B. Wavelet and Multiresolution Methods

While, as mentioned above, images of normal homogeneous tissue exhibit smoothly varying intensi-

ties, the goal of medical imaging is often to detect boundaries of organs or abnormalities such as lesions

or tumors. Such regions would be indicated by sharp changes in the uptake of the radioactive pharmaceu-

ticals, i.e. edges in the intensity image. Wavelets and multiresolution analysis are especially well-suited

for the detection of discontinuities and edges, which in medical images are critical for diagnostics.

Many investigators have considered the use of wavelet representations for image denoising, deblur-

ring, and tomographic image reconstruction; for examples, see [18–25]. However, in the context of

photon-limited imaging most wavelet-based approaches are based on Gaussian or other simplifying ap-

proximations to the Poisson likelihood. This is due to the fact that it is very difficult in general to apply

wavelets (as well as more recent innovations such as complex wavelets [26], steerable pyramids [27], and

curvelets [28]) to Poisson data, but wavelets and related representations are easy to use in the Gaussian

case. The Haar wavelet system is the only exception [29]; it does provide a tractable multiscale analysis

framework for Poisson data, and this paper builds on the Haar-based multiscale likelihood factorizations

we developed in [30, 31]. There are several reasons why Gaussian approximations are undesirable. First,

the approximations are usually only reasonable if the numbers of detected photons are sufficiently large

(so that the Poisson data, possibly after a suitable transformation, is roughly Gaussian distributed). To

insure that the photon count levels are large enough for Gaussian-based reconstruction algorithms to be

effective, the detections must be binned or aggregated over regions (usually pixels/voxels) of sufficiently

large area/volume. Thus, one must immediately sacrifice spatial resolution in order to accommodate the

approximations. This runs counter to the entire philosophy of wavelet and multiscale methods which

attempt to achieve some degree of spatial adaptivity in order to recover as much of the image detail and

structural nuances as possible from the data. Secondly, taking advantage of the wealth of theoretical, algo-

rithmic, experimental and clinical expertise developed in photon-limited imaging in the past two decades,

we observe that methods which retain the Poisson likelihood criterion as the fundamental tool for sta-

tistical inquiry are quite advantageous. This paper describes new multiscale methods for photon-limited

image denoising, deblurring, and reconstruction that are based on the Poisson likelihood and the classical
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EM algorithm.

Multiscale and wavelet methods fall under the broad heading ofcomputational harmonic analysis

(CHA). In image denoising and reconstruction problems, the basic approach pursued by CHA is to (i)

define a sufficiently rich class of functions that reasonably captures the characteristics of the images

under study, (ii) find a basis or similar representation consisting of simple, rapidly computable, space-

scale localized elements that is capable of approximating all functions in the class with a relatively small

number of terms, (iii) employ a coefficient thresholding or pruning criterion to remove terms with small

(presumably “noisy”) coefficients and reconstruct an estimate of the underlying image, and (iv) prove

that the estimator is optimal or near optimal in some sense. The basic idea is that because all functions

in the class can be represented by a small number of simple elements, it is possible to transform the raw

data into the alternate representation (e.g., wavelet) and then remove most of the terms (which in turn

eliminates most of the noise) without losing much signal. The result can be a very good estimate of the

underlying image. The conventional wisdom is that a representation that provides good approximations

will also provide good estimations [18].

C. Contribution

This paper introduces a new multiscale image representation based on atoms called platelets. Platelets

are localized atoms at various locations, scales and orientations that can produce highly accurate, piece-

wise linear approximations to images consisting of smooth regions separated by smooth boundaries.

Platelets generalize Donoho’s wedgelets [32], and like complex wavelets, steerable pyramids, and curvelets,

platelets are capable of concisely representing edges at various scales, locations andorientations. It is

shown that platelet approximations can significantly outperform conventional wavelet and wedgelet ap-

proximations (with respect to the number of terms required to achieve a given approximation error).

Moreover, platelet representations are especially well-suited to the analysis of Poisson data, unlike most

other multiscale image representations, and they can be rapidly computed. We propose a platelet-based

maximum penalized likelihood criterion that encompasses denoising, deblurring, and tomographic re-

construction problems. The criterion can be incorporated very easily into the classical EM algorithm and
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the overall computational burden is nearly the same as that of the basic EM-MLE algorithm [5]. This

paper focuses on the first three steps of the CHA program: (i) defining a class of functions (platelets)

suitable for describing the images commonly encountered in medical imaging applications, (ii) studying

the approximation capabilities of platelets, and (iii) devising MPLEs based on platelets. The performance

of platelet-based MPLEs is explored in this paper through a comprehensive set of realistic simulations.

Simulation results demonstrate that platelet-based MPLEs can outperform conventional EM-MLE algo-

rithms. The performance of platelet-based MPLEs is also explored with real data from nuclear medicine

and confocal microscopy experiments.

Deriving explicit mathematical bounds on the performance of the MPLEs is beyond the scope of this

paper due the the diverse nature of the problems under consideration. However, the impressive approx-

imation capabilities of platelets suggest that the MPLEs may indeed be close to optimal (in a minimax

risk sense). Recently, minimax risk bounds for Haar wavelet-based multiscale MPLEs of Poisson in-

tensities have been derived [29] which should be extendable to platelet-based denoising, deblurring and

reconstruction. This is currently under investigation and we plan to report on this in a follow-up paper.

The paper is laid out as follows. Section II introduces the platelet representation. A fundamental class

of images composed of smooth regions separated by smooth boundaries is defined and it is shown that

platelets provide dramatically superior approximations to images in the class compared to Fourier, wavelet

and other existing multiscale methods. Section III discusses multiscale analysis methods for Poisson data

and the notion of multiscale likelihood factorizations. We show that a Poisson likelihood, parameterized

by a platelet representation, admits a multiscale likelihood factorization, which is a probabilistic analog

of classical multiresolution analysis. Section IV proposes a new penalized likelihood criterion based

on platelets for “denoising” photon-limited images. The multiscale likelihood factorization enables a

fast, globally optimal algorithm that computes the MPLE. Section V studies more challenging (inverse)

problems including photon-limited image deblurring (restoration) and tomographic reconstruction. It is

shown that MPLEs can be computed rapidly using an EM algorithm in which the E-Step is identical to that

of the classical EM-MLE algorithm and the M-Step is quickly computed using the “denoising” algorithm

developed in the previous section. Examples from confocal microscopy are examined through simulations
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and with real data. Section VI summarizes the new methodology and algorithms and discusses ongoing

and future research directions.

II. PLATELET DECOMPOSITIONS ANDIMAGE APPROXIMATIONS

We begin by reviewing Haar multiscale image analysis and its connection to recursive partitions.

This sets the stage for developing multiscale platelet representations. The approximation capabilities

of platelets are explored and contrasted with Fourier, wavelet, and wedgelet based approximations.

A. Haar Multiscale Analysis and Image Partitioning

Image partitions are central to the approximation capabilities of platelets. We will see that piecewise

constant image estimation on dyadic squares is analogous to the Haar wavelet analysis, and that greater

efficiency can be achieved by employing wedgelet partitions.

Consider an imagex(u, v) on [0, 1] × [0, 1]. A J-scale, Haar multiscale analysis of the image is

achieved by defining the dyadic squares

Sm,n,j ≡ [m/2j , (m + 1)/2j)× [n/2j , (n + 1)/2j),

for j = 0, . . . , J − 1 andm,n = 0, . . . , 2j − 1, whereJ dictates the size of squares at the finest scale

of analysis. Each dyadic square is associated with a coefficientxSm,n,j ≡
∫
Sm,n,j

x(u, v). That is, we

define an analysis separating the information inx into its components at various combinations of position

and scale(m,n, j). This strategy underlies the analysis ofx with respect to an orthonormal basis of

dyadic Haar wavelets. Note that each dyadic squareSm,n,j splits into four smaller dyadic squares of

equal size. These four squares are called the “children” ofSm,n,j and are denoted by{ch(Si
m,n,j)}4

i=1.

In the following, the indexi will be suppressed to keep the notation cleaner. The coefficients associated

with the four children squares, denoted{xch(Sm,n,j)}, will be referred to as the children ofxSm,n,j .

The relationship between “parent” and children dyadic squares suggests the notion of a recursive par-

tition. The sequence of dyadic squares (from coarse-to-fine) can be interpreted as a recursive dyadic

partition of [0, 1]2. Consider a sequence of nested partitionsP1 ⊂ P2 ⊂ · · · ⊂ PM of the unit square,
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whereP1 = [0, 1]2, PM = ∪2J−1
m,n=0Sm,n,J , and each partitionP`, ` = 2, 3, . . . ,M , results from splitting

one and only one of the dyadic squares inP`−1 into four smaller dyadic squares. Hence the collection

P∗ ≡ {P`}M
`=1 is sometimes called acomplete recursive partition (C-RP)of the square[0, 1]2.

Note that a C-RP can be associated with a “quad-tree” graph. This tree can be adaptively pruned to

produce an incomplete RP with different size squares at different spatial locations. In the dyadic square

C-RP, the pruning process is quite similar to thresholding (setting to zero) Haar wavelet coefficients ex-

cept that the thresholding is performed with a hereditary constraint [33] (i.e., Haar wavelet coefficients at

a given scale may be kept only if all “parent” coefficients at coarser scales are retained in the represen-

tation). This hereditary constraint ensures that every pruning is an RP with a tree structure; in general,

thresholding Haar wavelet coefficients does not correspond to an RP.

Recursive partitions (and hereditary Haar analysis) are important because they allow for important

extensions of classical Haar multiscale analysis. In particular, one need not restrict the analysis to dyadic

square partitions. The wedgelet partition [32] is a dyadic, square recursive partition which allows for

non-square, “wedge-shaped” partitions only at the final level of the partition. That is, a wedgelet partition

is based on a recursive dyadic square partition of the image in which the final nodes are allowed to

terminate with a wedge instead of a square. Consider Figure 1 as a simple illustration of the efficiency

of the wedgelet partition space. Figures 1(b) and (c) contain rough approximations of the Shepp-Logan

phantom to within the same error using the hereditary Haar and wedgelet analyses. Notice how many

fewer partitions are required for wedgelet approximation.

The wedge split is defined by a line connecting two points on the sides of the square. The points are not

arbitrary; rather, they are chosen from a finite set of vertices spaced evenlyδ apart around the perimeter

of the square. This restriction is crucial because it means that the resulting “dictionary” of wedgelet

elements is finite and easily computed. The spacingδ is referred to as thewedgelet resolutionand it is a

key parameter of the wedgelet analysis. Following the development in [32], it is assumed thatδ = 2−J−K

with K ≥ 0.

The power of wavelets and wedgelets is realized in connection withm-term approximations.An m-

term approximation to an image is a superposition of anym representation elements(e.g.,m wavelet
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(a) (b) (c)

(d) (e) (c)

Fig. 1. Image Partitions. (a) Original image. (b) Haar approximation (error = 0.0155). (c) Wedgelet approximation
(error = 0.0158). (d) True edges. (e) Haar partition. (f) Wedgelet partition.

functions orm wedgelets). It is important to note that one can select them elements that provide the

best approximation, where the selection is unconstrained in the case of wavelet approximations and is

only constrained by the hereditary conditions dictated by the partition in hereditary Haar and wedgelet

approximations. This is sometimes referred to asnonlinearapproximation because the selection will

depend on the image under consideration (in contrast to linear approximation in which the terms used in

the approximation are selected without consideration of the image; e.g., the first (low frequency)m-terms

in a Fourier series).

Figure 2 shows the decay in hereditary Haar and wedgelet approximation errors as the number of terms

decreases. The wedgelet representation not only is more accurate with fewer terms, but also exhibits a

rate of error decay faster than that of the hereditary Haar representation. This demonstrates the sparseness

of the wedgelet partition space for multiple levels of approximation and supports the theoretical results in

[32].
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Fig. 2. Approximation errorsvs.number of parameters for Shepp-Logan phantom

B. Platelet Analysis

Recall that in the standard Haar and wedgelet partitions, the image is modeled as piecewise constant.

Instead of approximating the image on each piece of the partition by a constant, we can approximate it

with a planar surface. In many applications it is beneficial to have this added flexibility. Image gradients,

or smooth transitions between regions of varied intensities, encode information about light emission or

reflection as well as surface geometry. We define a plateletfS(x, y) to be a function of the form

fS(x, y) = (ASx + BSy + CS) IS(x, y), (1)

whereAS , BS , CS ∈ R, S is a dyadic square or wedge associated with a terminal node of an RP, andIS

denotes the indicator function onS. Each platelet requires three parameters, compared with the one pa-

rameter for piecewise constant approximation. Although each platelet has two more parameters per term,

for images of sufficient smoothness many fewer platelets than constant blocks are needed to approximate

an image to within a certain error. Thus, platelet approximations may require far fewer parameters for a

given level of accuracy.

Before proceeding to a more formal analysis of platelet approximation error decay rates, consider the
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example image in Figure 3. The surface plot of the test image reveals it to be a quadratic “bowl” with a

depressed quadratic “bump” in its center. This image provides anecdotal evidence of platelet superiority

over hereditary Haar and wedgelet approximations.

(a) (b)

Fig. 3. Quadratic test image. (a) Image. (b) Surface plot.

Approximations with similarL2 percent errors were chosen for Figure 4. Figure 4(a) is a hereditary

Haar approximation, and contains 2068 constant squares of varying sizes. Figure 4(b) is a wedgelet

approximation. Note that this image has an error similar to that of the image obtained with Haar approx-

imation, yet it contains only 56% as many terms, where a term is a constant block or a constant wedge;

i.e., each block divided into two wedgelets is represented by two terms. Next consider the rectangular

platelet approximation (computed on a rectangular partition instead of wedgelet partition) in Figure 4(c).

For each platelet, the parametersAS , BS , CS are chosen to minimize the total squared error of the fit

to the image. Again witness comparable approximation error with significantly fewer parameters. Here

each dyadic square is fitted with a platelet defined by three parameters. Finally, Figure 4(d) is an approx-

imation with a platelet fitted to each square or wedge region. In this case a block may be diagonally split

into two different gradients. For such a block, we need to store six parameters – three parameters for each

term, or region. In the image below, only 744 parameters are stored, in contrast to the256× 256 different

pixel values in the image. Clearly platelets provide an accurate, sparse representation of smooth images

containing smooth boundaries.

In fact, Figure 5 shows the decay in approximation error as the number of terms decreases. The platelet

representation not only is more accurate with fewer terms, but also exhibits a rate of error decay faster
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(a)

Terms = 2068, Params = 2068

(b)

Terms = 1164, Params = 1164

(c)

Terms = 928, Params = 1424

(d)

Terms = 510, Params = 774

Fig. 4. Approximations. (a) Haar. (b) Wedgelets. (c) Rectangular platelets. (d) Combined platelets and wedgelets.
Each approximation has error≈ 3× 10−4.

than that of the Haar and wedgelets representations. What follows is an analytical characterization of

these rates. What follows is an analytical characterization of these rates.

C. Platelet Approximation Theory

For this analysis, consider images which are smooth apart from a Hölder smooth boundary over[0, 1]2.

Images of this form can be modeled by fusing two (everywhere) smooth imagesf1 andf2 into one single

image according to

f(x, y) = f1(x, y) · I{y≥H(x)} + f2(x, y) ·
(
1− I{y≥H(x)}

)
, ∀(x, y) ∈ [0, 1]2,

whereI{y≥H(x)} = 1 if y ≥ H(x) and0 otherwise, and the functionH(x) describes a smooth boundary

between a piece off1 and a piece off2. This is a generalization of the “Horizon” image model proposed

in [32], which consisted of two constant regions separated by a Hölder smooth boundary.
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The boundary is described byy = H(x), where

H ∈ Hölderα(Cα), α ∈ (1, 2],

where Ḧolderα(Cα) for α ∈ (1, 2] is the set of functions satisfying

∣∣∣∣ ∂

∂x
H(x1)−

∂

∂x
H(x0)

∣∣∣∣ ≤ Cα|x1 − x0|α−1, for all x0, x1 ∈ [0, 1].

For more information on Ḧolder spaces see [34].

The smoothness of the imagesf1 andf2 is characterized by a two-dimensional surface smoothness

condition defined in [35]

fi ∈ Σ2(β, Cβ), β ∈ (1, 2], L > 0, i = 1, 2,

whereΣ2(β, Cβ) is the set of functionsf : [0, 1]2 → R1 with k = bβc = 1 continuous partial derivatives

satisfying

|f(y1)− py0(y1)| ≤ Cβ |y1 − y0|β , for all y0, y1 ∈ [0, 1]2,
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wherepx(z) is the Taylor polynomial of orderk for f(z) at pointx ∈ [0, 1]2.

The model describes an image composed of two smooth surfaces separated by a Hölder smooth bound-

ary. This is similar to the “grey-scale boundary fragments” class of images defined in [35], but our model

has fewer restrictions on boundary, consistent with the boundaries in [32]. The boundary of the model is

specified as a function ofx (hence the name “Horizon”), but we could have just as easily specified it as

a function ofy. Furthermore, more complicated boundaries (which are not functions ofx or y) can be

constructed with compositions of two or more Horizon-type boundaries.

The global squaredL2 error ofm-term platelet approximations for images of this form is bounded in

the following theorem (proved in Appendix A).

Theorem 1 Consider the class of images

f(x, y) = f1(x, y) · I{y≥H(x)} + f2(x, y) ·
(
1− I{y≥H(x)}

)
∀(x, y) ∈ [0, 1]2

wherefi ∈ Σ2(β, Cβ), i = 1, 2, andH ∈ Hölderα(Cα) with α, β ∈ (1, 2]. Suppose that2 ≤ m ≤ 2J ,

with J > 1. The squaredL2 error of m-term,J-scale, resolutionδ platelet approximation to images in

this class is less than or equal toKα,βm−min(α,β) + δ, whereKα,β depends onCα andCβ.

Theorem 1 shows that for images consisting of smooth regions (β ∈ (1, 2]) separated by smooth

boundaries (α ∈ (1, 2]) m-term platelet approximations may significantly outperform Fourier, wavelet,

or wedgelet approximations. For example, if the derivatives in the regions and along the boundary are

Lipschitz (α, β = 2, i.e., smooth derivatives), then them-term platelet approximation error behaves

like O(m−2) + δ, whereas the corresponding Fourier error behaves likeO(m−1/2) and the wavelet and

wedgelet errors behave likeO(m−1) at best. For very largem, the δ term will dominate the platelet

approximation error. However, for the modest values ofm of the most practical interest theO(m−2)

can be most significant and the platelet approximation may then be significantly better than the other

approximations. (To more precisely compare the approximation errors one needs to specify the constants

Cα andCβ, as well asδ.) Wavelets and Fourier approximations do not perform well on this class of

images due to the boundary. The reader is referred to [28, 32, 36] for the Fourier and wavelet error rates.
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Wedgelets can handle boundaries of this type, but produce piecewise approximations and perform poorly

in the smoother (but non-constant) regions of images.

For the wedgelet case, consider an image of the formf(x, y) = Ax, a linear gradient image. This

image is also in the class under consideration. Wedgelet approximations suffer due to their piecewise

constant nature. Because the gradient is constant, the best dyadicm-term wedgelet approximation in this

case partitions[0, 1]2 into roughly equal area regions, each of sidelengthO(1/
√

m). TheL∞ error in

each region isO(1/
√

m) (because the gradient is a fixed constant). Thus theL2
2 error in each region is

O(m−2) (squaredL∞ error× area) and the totalL2
2 error of the bestm-term wedgelet approximation is

O(m−1).

The conclusions of Theorem 1 as well as the error rates of Fourier/wavelet/wedgelet approximations

above also carry over to more complicated images composed of several smooth regions and boundaries.

Each additional boundary increases them-term approximation errors by integer multiples (two bound-

aries roughly doubles the error from the case of a single boundary).

We do not consider images with higher orders of smoothness (i.e. α, β > 2) in this analysis, although

proving an analog to Theorem 1 for a more general case would be a simple theoretical problem. In

order to achieve the approximation error decay rates derived in Theorem 1, it would be necessary to use

higher order approximating functions. For example, in approximating the class of images whereα, β ∈

(2, 3], one would need to use quadratic atoms separated by quadratic boundaries to achieve the desired

rates. While the theoretical aspects of such an approximation are straightforward, the implementation

is intractable. Currently, optimal wedgelets are determined through an exhaustive search of each slope-

intercept combination. Computing optimal quadratic boundaries would mean introducing an additional

degree of freedom and significantly increasing the computational complexity of the algorithm. Quadratic

surface fits on a wedgelet partition space would not be difficult to compute, but the approximation error

decay rate would still be fundamentally limited by the wedgelets.
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III. PLATELET ANALYSIS OF POISSONPROCESSES

In the previous section, we determined that platelets can accurately and efficiently approximate func-

tions in certain smoothness classes. Now suppose that we observe a two-dimensional realization of a

Poisson process, and wish to exploit the approximation capabilities of platelets in estimating the under-

lying Poisson intensity function. We describe here likelihood factorizations based on platelets, a key

factor in the optimality of the estimation algorithm described in the following section. This extends the

work done by Kolaczyk and Nowak for piecewise constantmultiscale likelihood factorizations[17]. The

polynomial and platelet factorizations described here provide an alternative probabilistic representation

of the information in an observation, in a manner indexed by the various location/scale combinations

offered by a given recursive partition. A likelihood factorization allows the likelihood of the entire image

to be represented in a tree structure in which both likelihoods and parameters of children are inherited

by parents. Thus, a likelihood factorization serves as a probabilistic analogue of an orthonormal wavelet

decomposition of a function. The parameters of the conditional likelihoods play the same role as wavelet

coefficients in a conventional wavelet-based multiscale analysis.

Suppose thatx(u, v) is a realization of a Poisson process. Underlying this process is a continuous

intensity functionλ(u, v), (u, v) ∈ [0, 1]2. Assume that either by choice or perhaps the limitations

of measuring instruments,x(u, v) is observed only discretely on the squares (pixels)Sm,n, m,n =

0, . . . , N − 1. It is assumed that the effect of the discretization is to yield an array of count measure-

mentsx ≡ {xm,n}N−1
m,n=0, associated with an array of intensity parametersλ ≡ {λm,n}N−1

m,n=0. Eachxm,n

is simply the number of events in the squareSm,n andλm,n ≡
∫
Sm,n

λ(u, v). The counts are conditionally

independent; given{λm,n}, xm,n ∼ Poisson(λm,n). The Poisson likelihood ofx, given the intensities

λ, is denoted byp(x|λ).

A Haar multiscale analysis of the count data is obtained by associating a count statisticxSm,n,j ≡∑
k,l:( k

N
, l
N

)∈Sm,n,j
xk,l with each dyadic squareSm,n,j , j = 0, . . . , J − 1, m,n = 0, . . . , 2j − 1, and

J = log2(N). There also exists a Haar multiscale analysis of the intensity function which is defined

analogously on dyadic squares. The multiscale likelihood factorizations provide an alternative proba-

bilistic representation (i.e., in addition to that of the original likelihood) of the information inx, in a
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manner indexed by the various position/scale combinations offered by a given C-RPP∗ (in this case the

partition underlying the dyadic Haar analysis) [29–31]. The keys to the likelihood factorization are the

facts that sums of Poisson variates are Poisson and that the conditional distribution of a collection of

Poisson variates given their sum is multinomial. Therefore, the conditional distribution of four children

{xch(S)} given the parentxS is multinomial. For a given C-RPP∗ the likelihoodp(x|λ) is factorized as

p(x |λ) = p(xS0 |λS0)
∏

S∈NT (P∗)

p({xch(S)}|xS , θS) , (2)

whereS0 ≡ [0, 1]2, andNT (P∗) is the set of all non-terminal squares inP∗ (i.e., excluding individual

pixelsSm,n). θS denotes the three parameters of the multinomial conditional likelihood of{xch(S)} given

xS , which consist of the ratios of the child intensities to the parent intensities. The child intensities are

thenλSθ1
S , λSθ2

S , λSθ3
S , andλS(1 − θ1

S − θ2
S − θ3

S). The expression in (2) serves as a probabilistic

analogue of an orthonormal wavelet decomposition of a function. The parameters of the conditional like-

lihoods play the same role as wavelet coefficients in a conventional wavelet-based multiscale analysis. In

fact, there is a one-to-one mapping between the multinomial parameters and the Haar wavelet and scaling

coefficients. The factorization in (2) can be shown to follow from a set of sufficient conditions whose

form and function are remarkably similar to those of a Haar wavelet analysis – effectively a multiresolu-

tion analysis of the likelihood function. This is important because it allows a simple framework for the

multiscale analysis of non-Gaussian dataa non-trivial task for wavelets alone. Details may be found in

[29].

For a general (incomplete) RP, sayP, certain terminal squares may include several pixels. The multi-

scale factorization in this general case takes the form

p(x |λ(P,θ)) = p(xS0 |λS0)
∏

S∈NT (P)

p({xch(S)}|xS , θS)

×
∏

ch(S)∈T (P)

p({xm,n}(m/N,n/N)∈ch(S)|xch(S)), (3)

whereθ ≡ λS0∪{θS}S∈(P) andT (P) is the set of all terminal squares inP and the conditional likelihood
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corresponding to each terminal squarep({xm,n}(m/N,n/N)∈ch(S)|xch(S)) is multinomial with equal prob-

abilities (since the intensity in the square is modeled as constant). Note that the intensity is constrained

to be defined with respect to the partition, as indicated by the notationλ(P,θ). For readability, however,

this function will simply be referred to asλ for the remainder of this paper. The fact that a partition of

the image space underlies the multiscale likelihood factorization is key. For example, it is not possible

to obtain a similar factorization with conventional smooth wavelets. This is simply due to the fact that

the distribution of an arbitrary linear combination (e.g., inner product or filtering) of Poisson variables

does not have a simple, easily expressed likelihood function (in fact a closed-form expression does not

exist). Only unweighted summations of Poisson variables possess a simple expression; namely the sum

of independent Poisson variables (e.g., arising when summing over a piece of the partition) is Poisson

distributed. Thus, Haar multiscale analysis and its generalizations are especially well suited to the study

of Poisson data.

Wedgelet partitions produce a multiscale likelihood factorization of the form (3), in which case the

terminal nodes of the partition can denote wedge-shaped regions in addition to squares; that is,S ∈ (P)

may be a dyadic square or wedge. Because the spatial resolution of the acquired image data is limited to

pixel size squares (2−J × 2−J ), the continuous wedgelet partitions discussed in the previous section are

replaced by “digital” wedgelets. The splitting “line” defining a digital wedgelet is a pixel-scale approxi-

mant of the ideal line; i.e., the digital wedgelet split boundary follows the boundaries of pixels, producing

a staircase-like approximation to a line. A digital wedgelet splits a dyadic square into two pieces, the two

pieces contain disjoint sets of pixels. Note that this also implies that the wedgelet resolution (spacing of

vertices) isδ = 2−J , the sidelength of a pixel. Additionally, instead of approximating the intensity func-

tion on each piece of the partition by a constant, we can approximate it with a planar surface (platelet).

The likelihood factorization is still valid, but the terminal node likelihood functions may now be param-

eterized by a planar intensity function requiring two extra parameters for the slope of the gradient in

addition to a parameter corresponding to the estimated total intensity of the associated square or wedge



19

shaped region. In this case,

p(x |λ) = p(xS0 |λS0)
∏

S∈NT (P)

p({xch(S)}|xS , θS)

×
∏

ch(S)∈T (P)

p({xm,n}(m/N,n/N)∈ch(S)|xch(S), θch(S)), (4)

where the terminal node likelihood factorsp({xm,n}(m/N,n/N)∈ch(S)|xch(S), θch(S)) are the multino-

mial likelihoods of the data inch(S) given a planar modelθch(S) of the intensity onch(S). More

specifically,xch(S) is the total photon count in the regionch(S). This leaves us with two degrees of

freedom (embodied inθch(S)) that complete the description of a planar intensity model onch(S); e.g.

θch(S) = {Ach(S), Bch(S)}. It turns out that maximum likelihood estimates of the parameters of the linear

surfaceθch(S) are easy to compute because, as shown in the next section, the log likelihood function is

concave.

IV. PHOTON-L IMITED IMAGE DENOISING

The recursive partitions and likelihood factorizations discussed in the previous two sections are critical

to the optimal tree-pruning estimation/denoising algorithm detailed in this section. We will see that the

maximum penalized likelihood criterion coupled with the likelihood factorizations results in a globally

optimal estimation/denoising algorithm. The potential effectiveness of this algorithms is demonstrated

by applying the algorithm to real and simulated data.

A. Maximum Penalized Likelihood Estimators

The multiscale likelihood factorizations above provide for a very simple framework for maximum

penalized likelihood estimation, wherein the penalization is based on the complexity of the underlying

partition. While this paper focuses on complexity regularization, a variety of penalization schemes could

be effective, including the roughness penalties described in [37]. A key feature of our penalization scheme

is that the penalty of each partition cell is inherited along with the pixel estimates for that cell, as will be

described shortly. This inheritance is possible because the penalties are separable and additive, which en-

sures the optimality of the tree-pruning algorithm proposed in Section IV-B. Any alternative penalization
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scheme must exhibit this separability and additivity.

In our complexity regularization scheme, the complexity of a given partition is proportional to the total

number of regions. For example, a C-RP partitions the image into each individual pixel, and thus has

complexityO(N2). An (incomplete) RP withR regions has complexityO(R). The maximum penalized

likelihood criterion we employ here is

Lγ(λ) ≡ log p(x | λ) − γ {#θ}, (5)

wherep(x |λ) denotes a likelihood (factorization) of the form (2), (3), or (4), and{#θ} is the number

of parameters in the vectorθ (one for each constant region, three for each planar region). (Recallλ is a

function of the multiscale parameters and partition;i.e. λ = λ(θ,P).) The constantγ > 0 is a weight

that balances between fidelity to the data (likelihood) and complexity regularization (penalty), which

effectively controls the bias-variance trade-off.

The solution of

(P̂, θ̂) ≡ argmax
P,θ

Lγ(λ(P,θ))

λ̂ ≡ λ(P̂, θ̂) (6)

is called a maximum penalized likelihood estimator (MPLE). Larger values ofγ produce smoother, less

complex estimators; smaller values ofγ produce more complicated estimators. Note that ifγ = 0, then

no penalty is assigned and a C-RP (withN2 free parameters) maximizes the likelihood. Since a C-RP

corresponds to a pixel-based partition, in theγ = 0 case the MPLE reduces to the conventional maximum

likelihood estimator (MLE).

The approximation-theoretic result of Theorem 1 has important implications for the performance of

the platelet-based MPLE. The mean square error (MSE) of the MPLE can be separated into squared bias

and variance. The variance of the MPLE is proportional to the number of termsm ∝ {#θ} in a platelet

approximation. The squared bias is proportional to the error of anm-term platelet approximation to the
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underlying true intensity. We have shown that for a class of images characterized by regions of smooth

intensity separated by smooth boundaries platelet approximations with a small number of terms (relative

to the number of pixels) can be quite accurate. This means that if the underlying intensity belongs to this

class (or if it can be closely approximated by a member of the class), then Theorem 1 shows that for a

small value ofm there exists an accuratem-term platelet approximation to the true intensity. Ifm � N2,

then the reduction in variance will be dramatic, and the platelet-based MPLE will tend to have a small

MSE. Our ongoing work includes a careful analysis of the minimax bounds on the error.

Maximizing (5) involves adaptively pruning the C-RP based on the data. This pruning can be per-

formed optimally and very efficiently using bottom-up, CART-like algorithms [33]. A solution to (6) can

be computed inO(N2) operations (i.e., number of operations is proportional to number of pixels), as

demonstrated below. The pruning process is akin to a “keep or kill” wavelet thresholding rule. An MPLE

provides higher resolution and detail in areas of the image with higher count levels (higher SNR) and/or

where strong edges are present. The partition underlying the MPLE is pruned to a coarser scale (lower

resolution) in areas with lower count levels (low SNR) and where the data suggest that the intensity is

fairly smooth. Moreover, the possibility of wedgelet partitions and planar fits allows the MPLE to adapt

to the contours of smooth boundaries in the image and smooth (but non-constant) variation in the image

intensity.

B. Optimal Pruning Algorithm

Observe that the structure of the penalized likelihood criterion stated in (5) and the likelihood factor-

ization described in Section III allow an optimal intensity estimate to be computed quickly. Equation (5)

may be expanded using (4) to yield:

Lγ(λ) = log p(xS0 |λS0) + pen(λS0) +
∑

S∈NT (P)

log p({xch(S)}|xS , θS) + pen(θS)

+
∑

ch(S)∈T (P)

log p({xm,n}(m/N,n/N)∈ch(S)|xch(S), θch(S)) + pen(θch(S)).
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The penalty of the total image intensity parameter,λS0 , is γ because of the singular dimension of the

parameter. Each nonterminal node’s penalty, pen(θS), is eitherγ or 3 γ because once the value of the

parent node is known, there are only one or three free parameters necessary to describe how the intensity

is distributed among the children in a wedge split or a quad split, respectively. Finally, each terminal

node’s penalty, pen(θch(S)), is either0 or 2 γ; once the value of the parent node is known, no parameter is

needed to represent a constant-valued region, and two parameters are needed to to represent the gradient

of a planar fit to the data. The likelihood factorization allows the likelihood of the entire image to be

represented in a tree structure in which both likelihoods and parameter penalties of children are inherited

by parents. Using this, it is possible to optimally prune an RP of the data using a fast algorithm reminiscent

of dynamic programming, Coifman and Wickerhauser’s “Best-Ortho-Basis” algorithm [38], or the CART

algorithm [33].

The goal is to estimate the intensityθ according to (6). In order to perform the estimation, the algorithm

considers each dyadic square in the partition of the observed image and performs anM -ary hypothesis

test. The hypotheses for each dyadic square are as follows:

• H0: Square Constant = homogeneous square (terminal node)

• H1: Wedgelet = two homogeneous wedges (terminal node)

• H2: Square Platelet = dyadic linear gradient on square (terminal node)

• H3: Wedged Platelet = linear gradients on two wedges (terminal node)

• H4: Quad split = inherit from children (non-terminal node)

It is also possible to consider a subset of{Hi}; e.g.using onlyH0 andH4 coincides with the hereditary

Haar analysis (with no wedgelets or platelets). The algorithm begins one scale above the leaf nodes in

the quad tree and traverses upwards, performing a tree-pruning operation at each stage. For each node

(i.e., dyadic square) at a particular scale, the penalized log likelihoods for each hypothesis are calculated.

In particular, the penalized log likelihood for the quad split is computed using the optimal penalized log

likelihoods computed at the previous, finer scale for each of the four children. As demonstrated above,

these four child penalized log likelihoods add to yield the penalized log likelihood of the parent node,

and then this log likelihood is compared with those for the other four hypotheses. If, for a given node, the
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Initialize: j = J − 1
Loop: for each nodeSj,m,n at levelj

Calculate: Lγ(θHi ;Sj,m,n) for 0 ≤ i ≤ 3
Lγ(θH4 ;Sj,m,n) =

∑
S′∈ch(Sj,m,n) Lmin(S′)

Save: Lmin(Sj,m,n) = min0≤i≤4 Lγ(θHi ;Sj,m,n)
θmin(Sj,m,n) = arg min0≤i≤4 Lγ(θHi ;Sj,m,n)

Coarsen Scale: j = j − 1
Goto Loop ifj ≥ 0
Prune: Perform a depth first search for terminal nodes. When a terminal

node is found, record the MPLE for each pixel descending from
the current node.

TABLE I
ALGORITHM PSEUDOCODE

maximum penalized log likelihood is associated with a hypothesis other than a quad split, then that node

is made a terminal node with parameters appropriate to the said hypothesis; its children are then pruned

from the RP. The maximum log likelihood for this newly terminal node will be used for all quad split

log likelihood computations for all of the node’s ancestors unless it, too, is pruned during analysis on a

higher scale. The algorithm pseudocode is in Table I. In the table,Lγ(θHi ;Sj,m,n) denotes the penalized

log likelihood term for squareSj,m,n under hypothesisHi.

C. Computational Complexity

Before examining the computational complexity of this algorithm, we first establish the concavity of

the log likelihood function, which will allow us to perform the optimization rapidly. There is no closed-

form solution to the MLE of the plate parameters with respect to the Poisson or multinomial likelihood;

however, they can be computed numerically, as described for the Poisson case by Unser [39]. In this

case, the likelihood in the platelet factorization is concave in the platelet parameters, which means that

a numerical optimization technique such as Newton’s method or gradient descent can find the optimal

parameter values. In addition, since there are only two parameters per platelet, the optimization is over a

two-dimensional space and may be solved with relatively few iterations of the optimization algorithm of

choice. The parameters in the case of constant regions or wedgelets are just the count averages, and in

that case no such numerical optimization technique is necessary, although the concavity result still holds.
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The following lemma, proved in Appendix B, establishes the concavity. Consider a terminal node log

likelihood term for a platelet:log p({xm,n}(m/N,n/N)∈ch(S)|xch(S), θch(S)). The subscriptsch(S) will

be dropped to simplify the notation at this point. The log likelihood is multinomial and the multinomial

parameters, denotedρ, are not equal (as in the case of a constant region) but instead obey a linear model

of the formρ = Tθ, whereθ is a two-parameter vector describing the gradient of the intensity (and hence

the linear relationship between the multinomial parametersρ) andT is a matrix relating the parameters

to the gradient field.

Lemma 1 The log (multinomial) likelihood function of a platelet is concave inθ.

This lemma makes the following bounds of the computational complexity of this algorithm possible. We

bound the computational complexity of performing either an “approximate” or exact MPLE, where the

“approximate” estimate uses a (suboptimal) least-squares platelet fit and the exact estimate is obtained by

numerically optimizing the (concave) log likelihood function for the most likely platelet fit. The theorem

below is also proved in Appendix B.

Theorem 2 (MPLE): A Haar MPLE can be computed inO(N2) operations, whereN2 is the number of

pixels in the image. A wedgelet or “approximate” platelet MPLE can be computed inO(N3) operations.

An exact platelet MPLE can be computed inO(N4) operations.

The “approximate” platelet fit is used in all experiments discussed in this paper.

D. Penalty Parameter Selection

The selection of the penalty parameterγ in the penalized likelihood (5) plays a significant role in the

performance of the MPLE. Large values ofγ favor variance reduction and may introduce a non-negligible

bias. Small values ofγ result in a nearly unbiased estimator which may have a large variance. The best

overall performance (as measured by MSE) depends on the choice ofγ. In this section we study the

performance of the MPLE in simulated denoising experiments and investigate the effect ofγ. We give a

simple rule for settingγ which provides very good performance over a broad range of intensity levels.



25

There has been a significant amount of theoretical work regarding the choice ofγ in the context of

wavelet (Gaussian) denoising methods [33, 40] as well as for Haar-based MPLE Poisson denoising [29].

In those works, it is shown that near minimax optimal results are obtained withγ = c log(n), wheren is

the number of pixels or the total number of counts andc is a constant. Here we use this form forγ and

determine a “good” setting for the constantc.

Consider the graphs in Figure 6. The MSE performance of platelet-based denoising of the “Bowl” test

intensity and wedgelet-based denoising of the Shepp-Logan intensity is examined over a range of count

levels (SNRs) andγ settings. For each case (SNR andγ) we compute the MPLE for10 independent

realizations (Poisson count images generated from each intensity image, scaled to produce the desired

SNR) and display the MSE (averaged global squared error) in the plots. We see thatγ = 1
5 log(#counts)

consistently results in a low MSE, nearly the minimum MSE in all cases examined. This setting forγ

is used in all denoising and deblurring experiments described in this paper. In the tomography problem

(described in the next section), the nature of the projection process changes the relationship betweenγ

and the MSE. Through similar experiments (not reported here) we have found thatγ = 1
50 log(#counts)

provides low MSEs over a range of count levels. The fact thatγ is proportional tolog(#counts) provides

a built-in adaptivity to the underlying SNR level.

(a)
10-2 10-1 100 101

10-3

10-2

10-1

100

γ / log(# of photon counts)

M
ea

n
 M

S
E

Shepp-Logan

Ave. Counts/Pixel = 1
Ave. Counts/Pixel = 10
Ave. Counts/Pixel = 100

(b)
10

-2
10

-1
10

0
10

110
-4

10
-3

10
-2

10
-1

10
0

γ / log(# of photon counts)

M
ea

n 
M

S
E

Bowl

Ave. Counts/Pixel = 1
Ave. Counts/Pixel = 10
Ave. Counts/Pixel = 100

Fig. 6. Variation of MSE with penalty parameterγ, indicating thatγ = 1
5 log(#counts) is adequate for both

platelet and wedgelet denoising for different SNRs. (a) Wedgelet denoising on Shepp-Logan phantom. (b) Platelet
denoising on quadratic bowl image.
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Here, as in all experiments described in this paper, we calculate errors using a globalL2 metric. This

is an intuitive, straightforward metric commonly used to asses quality for general image processing tasks.

There do exist a number of other metrics for assessing how well an algorithm accomplishes a specific task,

but the MSE is an acceptable general measure of performance. This global measure may not be sensitive

to some characteristics central to some medical imaging tasks; this warrants further investigation. We

acknowledge that the experimental results presented in this paper do not completely characterize the

numerical performance of platelet-based MPLE algorithms, but such evaluations are beyond the scope of

this paper. The purpose of this paper is propose a new method for reconstructing medical images, prove

theoretically that it has the potential to outperform some existing reconstruction algorithms, and provide

some initial examples of the algorithms effectiveness. A platelet-based algorithm could constitute the

core of several different, sophisticated reconstruction algorithms, designed to compete with state-of-the-

art algorithms for specific medical imaging applications. Extensive numerical validation of the platelet-

based MPLE would be best suited to this later stage.

E. Denoising Experiments and Applications

To demonstrate the effectiveness of platelet-based denoising, we have applied both the Haar-based and

platelet-based MPLE to a confocal microscopy phantom with Poisson noise. This phantom is described

in detail in Section V-C. The128× 128 noisy data contained a total of 107,000 counts. The phantom and

noisy data are displayed in Figures 7(a) and (d), respectively. Figures 7(b) and (c) show the Haar- and

platelet-based MPLE results. Here the global MSE is lower for the platelet estimate, and the resulting

image is visually more appealing than the Haar image due to the combination of smooth edges and smooth

surfaces.

For the second set (Figures 7(e) and (f)), we applied a technique called “averaging over shifts” or

“cycle-spinning” [41, 42]. This entails circularly shifting the raw data by a few pixels, denoising, and then

shifting the estimate back to its original position. Five shifts in each direction (horizontal and vertical)

yielded a total of twenty-five estimates, which are then averaged. This technique often improves denoising

and reconstruction results because it reduces the dependence of the estimator on the dyadic partition. We
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employ this technique in all subsequent experiments. Both the Haar- and platelet-based image estimates

improve (both in an MSE sense and in the reduction of visible artifacts) as a result of this technique.

(a) (b) (c)

(d) (e) (f)

Fig. 7. Denoising of confocal microscopy phantom. (a) Phantom image. (b) Haar-based MPLE estimate.
MSE=0.0173. (c) Platelet-based MPLE estimate; MSE = 0.0089. (d) Noisy image. (e) Haar-based MPLE esti-
mate averaged over 25 shifts; MSE = 0.0057. (f) Platelet-based MPLE estimate averaged over 25 shifts; MSE =
0.0034.

Figure 8(a) depicts an image of a heart obtained from a nuclear medicine study. The image was obtained

using the radiopharmaceutical Thallium-201. In this type of study, the radiopharmaceutical is injected

into the bloodstream of the patient and moves into the heart wall in proportion to the local degree of

blood perfusion. The purpose of the procedure is to determine if there is decreased blood flow to the

heart muscle. Figure 8(f) depicts an image of the spine obtained from a nuclear medicine study. The

radiopharmaceutical used here is Technetium-99m labeled diphosphonate. In bone studies such as this,

brighter areas indicate increased uptake of blood in areas where bone growth or repair is occurring.

Functional changes in the bone can be detected using nuclear medicine image before they will show up

in X-ray images. More information on this data can be found in [43].

The hereditary Haar and platelet based MPLE results are shown below below. The first set of estimates

(Figures 8 (b),(c),(g), and (h)) were generated by one pass through the denoising algorithm. In both
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the heart and the spine images, the Haar-based MPLE results effectively capture the image intensity,

yet exhibit considerable blocking artifacts. In contrast, the platelet-based MPLE results provide much

smoother intensity estimates. Furthermore, the artifacts do not blur structure edges to the same extent as

the Haar blocking artifacts. For the second set (Figures 8 (d),(e),(i), and (j)), we applied averaging over

shifts again, which resulted in a significant reduction in both blocking and platelet artifacts. The platelet-

based MPLE images are smooth without the blurred appearance of the Haar-based MPLE images. This

is particularly evident in the spine, where the platelets enhance the appearance of individual vertebrae.

V. PHOTON-L IMITED IMAGE RESTORATION AND RECONSTRUCTION

In many medical imaging applications, the detected photons are indirectly related to the object of inter-

est. For example, confocal imaging systems may involve a blurring process, and SPECT and PET require

the measurement of tomographic projections. Blurring and tomographic projections can be described

statistically as follows. Photons are emitted (from the emission space) according to an intensityλ. Those

photons emitted from location(k, l) are detected (in the detection space) at position(m,n) with transition

probabilitypk,l,m,n. In such cases, the measured data are distributed according to

xm,n ∼ Poisson

∑
k,l

pk,l,m,n λk,l

 . (7)

Notice that the intensity of the observation is
∑

k,l pk,l,m,nλk,l, rather thanλm,n as in the direct case. The

transition probabilitiespk,l,m,n represent the blurring or projection process. The recoveryλ from x is an

inverse problem; one must invert the effects ofp ≡ {pk,l,m,n}.

The Poisson likelihood function ofx givenλ is denotedp(x|λ). The log-likelihood is

log p(x|λ) =
M1∑

m=0

M2∑
n=0

− N−1∑
k,l=0

pk,l,m,nλk,l + xm,n log

N−1∑
k,l=0

pk,l,m,nλk,l

− log xm,n!

 , (8)

whereM1 × M2 is the dimension of the detection space andN × N is the dimension of the emission

(or image) space.M1 andM2 are arbitrarily determined by the detection system, and for convenience

assume thatN is a power of two. The likelihood function here is much more complicated due the the
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presence ofp, and a multiscale likelihood factorization is not possible. Therefore the inverse problem

faced in deblurring (restoration) and tomographic reconstruction cannot be solved by simple tree-pruning

methods. The multiscale approach developed in the previous chapters can however be applied within the

context of an EM algorithm. The key idea in the EM algorithm (as it generally applies to photon-limited

imaging problems) is that the indirect (inverse) problem can be broken into two subproblems; one which

involves computing the expectation of the unobserved direct data (as though no blurring or projection

took place) and one which entails estimating the underlying image from this expectation.

Central to the EM algorithm is the notion of “complete” data [16] defined asz = {zk,l,m,n}, where

zk,l,m,n denotes the number of photons emitted from(k, l) and detected at(m,n). The complete data are

Poisson distributed according to

zk,l,m,n ∼ Poisson(λk,l pk,l,m,n) . (9)

Hence the observed datax in (7) are given byxm,n =
∑

k,l zk,l,m,n. Additionally, were we able to

observez = {zk,l,m,n}, the direct emission data for each location(k, l) is given by sums of the form

yk,l ≡
∑

m,n zk,l,m,n, from which it follows thatyk,l ∼ Poisson(λk,l). Therefore, ifz were known,

we could avoid the inverse problem altogether and simply deal with the issue of estimating a Poisson

intensity given direct observations.

In earlier work [44], we developed an EM algorithm that can be adapted to the MPLE considered

here. The approach developed in our earlier work employed a Haar-based Bayesian estimator. The priors

of the estimator were quite different from the complexity penalty used here. In addition, that approach

only applies to the Haar case and is not applicable to wedgelet and platelet-based MPLEs. Furthermore,

tomography experiments with the multiscale Bayesian method [44] showed that its performance was

competitive with (but could be slightly inferior to) stopped EM-MLE reconstruction methods. Here we

demonstrate that the Haar and wedgelet based MPLEs performbetterthan even the best possible stopped

EM-MLE procedure both perceptually and in terms of the global MSE.
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A. Maximum Likelihood Estimation

It is well-known that the maximizer of (8) cannot be expressed in closed-form, but the concavity of the

log-likelihood allows a numerical determination. While in principle any numerical optimization method

could be used, the iterative EM algorithm, as first proposed for this problem in [45], has a number of

features that make it especially desirable, most notably its natural, probabilistic formulation, computa-

tionally straightforward calculations at each iteration step, and numerical stability [16]. Moreover, it

can be shown that the EM algorithm monotonically increases the log-likelihood at each iteration and

converges to a global (not necessarily unique) point of maximum for (8) [5].

Unfortunately, due to the ill-posed nature of the likelihood equations, the variance of the MLE can be

quite high, particularly for applications involving low counts. In fact, in many cases the MLE is practically

useless. A popular remedy is to stop the EM algorithm prior to convergence (e.g., [17]). Stopping the

algorithm acts implicitly as a smoothing operation and can produce acceptable results. However, it may

be preferable to abandon the strictly likelihood-based perspective altogether, and approach the inverse

problem with a different criterion, one that smoothes through a well-defined optimal solution, while still

providing useful and meaningful results.

B. EM-MPLE using Platelet Approximations

The maximum penalized likelihood function employed here is

Lγ(λ) ≡ log p(x |λ) − γ {#θ}, (10)

where{#θ} is the number of parameters in the vectorθ. Again, keep in mind that the intensity is a

function of the partition and the multiscale parameters; i.e.,λ = λ(θ,P). The constantγ > 0 is again

a weight that balances between fidelity to the data (likelihood) and complexity penalty. In maximizing

this function, the resulting reconstruction will be one that has a relatively high likelihood value as well as

a relatively low complexity Haar, wedgelet, or platelet representation. The EM algorithm can be easily

modified to produce a sequence of reconstructions that monotonically increase this function. To simplify
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the notation in the derivation of the EM algorithm, the intensity functions will be denoted byλ (without

explicit indication of the dependence onP andθ).

The EM algorithm is based on consideration of the following conditional expectation:

Lc
γ(λ) ≡ log p(z |λ) − γ {#θ}, (11)

where the likelihood of the observed datax is replaced by the likelihood of the (unobserved) complete

dataz. The E-Step of the algorithm computes the conditional expectation ofLc
γ(λ) given the observed

data. This expectation is computed using the Poisson distribution corresponding to the previous iterate of

the algorithm. That is, the E-Step at thei + 1-th iteration computes the surrogate function

Q(λ(i),λ) ≡ Eλ(i)

[
Lc

γ(λ)|x
]
, (12)

where the subscript on the expectation is the previous iterateλ(i) of the algorithm and indicates that

the expectation is computed using the Poisson distribution of that intensity. Note that the conditional

expectation is

Eλ(i)

[
Lc

γ(λ)|x
]

= Eλ(i) [log p(z |λ)|x] − γ {#θ}. (13)

The penalty term does not depend onx and so it is simply a constant in this step. Therefore, the E-Step

here is equivalent to the E-Step of the conventional EM-MLE algorithm; it computesEλ(i) [log p(z |λ)|x].

The complete data log likelihoodlog p(z |λ) happens to be a linear function ofz and so this calculation

simplifies to computing thez(i) ≡ Eλ(i) [z|x]. A closed-form expression for this calculation can be found

in [5]. In general each E-Step requiresO(M1M2N
2) operations, but often the structure ofp can be ex-

ploited to simplify the calculation (e.g., ifp corresponds to a convolution andM1 = M2 = N , then the

E-Step can be calculated inO(N2) operations).

The M-Step of the algorithm is the maximization ofQ(λ(i),λ) overλ. The penalty, which is a function

of λ, plays a key role in this step. Based on the derivation of the EM algorithm in [44], the surrogate
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function can be written as

Q(λ(i),λ) = log p(y(i) |λ) − γ {#θ} + C(x), (14)

wherey(i) is the unobserved direct data (computed fromz(i)) andC(x) is a constant depending onx but

notλ. Thus, the M-Step is equivalent to maximizinglog p(y(i) |λ) − γ {#θ}. Remarkably, becausey is

the direct data, the M-Step is equivalent to the denoising calculation discussed in the previous section with

y(i) in place ofx. To compute the M-Step, first computey
(i)
k,l =

∑
m,n z

(i)
k,l,m,n, wherez(i) is computed in

the E-Step. Then carry out the pruning algorithm described in the previous section to compute the vector

θ (and fromθ constructλ) that maximizesQ(λ(i),λ). This results in the next iterate of the algorithm,

λ(i+1). Each iteration of this algorithm has the computational complexity stated in Theorem 2.

The EM algorithm must be initialized, and in all examples considered here the initialization is a con-

stant image of total intensity equal to the total number of counts detected. The penalized log likelihood

of each iterate is equal to or greater than that of the previous iterate (monotonicity of EM), however the

algorithm is not guaranteed to converge to a global maximum of (10). Two applications of the MPLE and

EM algorithm are examined next.

C. Confocal Microscopy

Confocal microscopy is used to obtain volume images of small fluorescent objects with high spatial

resolution [3]. To generate a confocal fluorescence microscope (CFM) image, the microscope performs

a 3D scan of the object. At each point in the scan, a photo multiplier tube measures the emission of

fluorescence light from the object, essentially acting as a photon counter.

Due to the geometry of these microscopes, a “blurring” is introduced into the measurement process.

This distortion of the image is commonly modeled by the convolution of the true image with the point

spread function of the microscope. Since the arrival of fluorescence light at the photo multiplier tube can

be modeled as a Poisson process, the “de-blurring” and estimation process may be viewed as a Poisson

inverse problem well suited to the application of iterative estimation using the EM algorithm, as detailed

in [6]. The E-step of the algorithm is rapidly computed using the FFT to perform the convolution. In
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practice, the M-step commonly consists of performing maximum likelihood estimation, but these esti-

mates are known to diverge from the true image after several iterations. A common use for CFMs is the

imaging the dendritic spines of neurons. In order to demonstrate the capabilities of the platelet-based

MPLE in confocal microscopy, we have created a scale phantom of an image of a dendrite segment with

thin, stubby, and mushroom spines. See [46] for descriptions of dendrites and the various types of spines.

Some regions of the object will be closer to the detector or exhibit more fluorescence than others, resulting

in image gradients and making this an excellent candidate for platelet analysis.

Figure 9(a) contains the128 × 128 phantom developed for this experiment, and Figure 9(d) contains

the blurred and noisy data. The best MLE estimate in Figure 9(b) is the MLE image at the iteration

when itsL2 error was smallest. In practice it is not possible to know which iteration yielded the best

ML estimate, but it is included here to demonstrate that MPLE algorithms converge to a point with lower

error than the best possible (in theL2 sense) image obtainable with the commonly used stopped-MLE

technique [17]. Figure 9(c) is a closeup of a small region of Figure 9(b). The averaged-over-shifts Haar-

based MPLE appears in Figure 9(e), and its closeup in Figure 9(f). Likewise, the averaged-over-shifts

platelet-based MPLE appears in Figure 9(h) and its closeup in Figure 9(i). These images reveal the

nature of the artifacts caused by each of the algorithms. The EM-MLE image exhibits blurred edges

and a mottled surface. The Haar-based MPLE image also exhibits blurred edges but a smoother surface

with some blocking artifacts. The platelet-based MPLE exhibits sharp edges and some blocking artifacts

on the surface. Since the platelets approximate image gradients better than the Haar basis, the platelet

blocking artifacts are at a larger scale than the Haar-based blocking artifacts. The blocking artifacts are

a result of the underlying recursive dyadic partitioning scheme and common to many multiresolution

techniques. Translation invariant methods, which should reduce these effects, are a focus of ongoing

work. Finally, Figure 9(g) plots theL2 error of each of the three estimates at each iteration. After several

iterations the EM-ML estimate worsens considerably with each subsequent iteration. In contrast, both

MPLEs converge eliminating the need to choose which iteration is the best stopping point, as done with

the EM-MLE. Furthermore, the converged MPLEs exhibit significantly lessL2 error than the best MLE.

Figure 10 demonstrates the capabilities of platelet analysis on a real confocal microscopy image of a
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dendritic spine.1 In this case the structure of the dendritic spines is of critical interest to researchers. As

demonstrated, the platelet-based MPLE can perform better than both the stopped MLE and the Haar-based

MPLE. The platelet algorithm effectively extracts image gradients and edges better than the Haar-based

algorithm, but it converges with fewer artifacts than the EM-MLE algorithm.

D. Emission Computed Tomography

Here we consider the application of our framework to emission computed tomography (ECT). In med-

ical ECT, a human subject is injected with a radioactive pharmaceutical specifically designed for ab-

sorption in certain bodily organs or tissues. The distribution of this pharmaceutical within the subject

can provide functional and/or anatomical diagnostic information. To obtain a mapping of pharmaceuti-

cal uptake, data are collected by detecting beta-ray photons that are emitted from within the subject as

the pharmaceutical decays. From theseprojectiondata (the indirect datay in our problem), we wish to

estimate the underlying pharmaceutical distribution (intensityλ). The probability transition matrixp is

derived from the physics and geometry of the detection device and data collection process [5].

In Figure 12 we illustrate the application of our multiscale framework to a simulated single photon ECT

problem. The underlying 2-d intensity in our simulation is the common Shepp-Logan model, a standard

benchmark in SPECT. The intensityλ is a64 × 64 square image shown in Figure 12(a). The transition

probability matrixp, corresponding to aparallel strip-integral geometrywith 80 radial samples and 60

angular samples distributed uniformly over 180◦, was generated by theASPIREsoftware system [47].p

was applied toλ to obtainµ, and we used a standard Poisson random number generator to synthesize the

projection datay. The Shepp-Logan model is piecewise constant, and so we employ a wedgelet-based

MPLE instead of using platelets.

For comparison, in Figure 12(b) we show the very best likelihood-based reconstruction obtained by

stopping the likelihood-based EM algorithm at the reconstruction having the smallest global squared

error, which is impossible to determine in practice since the true intensity is unknown. Figures 12 (c) and

1The authors would like to thank Tycho Hoogland, Division of Neuroscience, Baylor College of Medicine, for this data and
valuable discussions.
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(d) display the Haar- and wedgelet-based MPLE algorithm results, respectively. The plot in Figure 12(e)

displays the globalL2 error decay as a function of iteration. Note that, unlike the EM-MLE algorithm

for which the error diverges, the MPLE errors settle down towards minimums as we continue to iterate.

Comparison of the Haar- and wedgelet-based MPLE images reveals the effectiveness of the wedgelets

in defining boundaries of structures within the image. While the wedgelet-based estimate exhibits an

slightly higher overall MSE, the visual quality of the image is superior.

For further comparison, Figure 12(c) shows the best reconstruction obtained using penalized weighted

least squares with a partitioned separable paraboloidal surrogate (SPS) coordinate ascent reconstruction

algorithm [48], calculated using Fessler’s Tomography Toolbox [49]. This algorithm is representative of

modern tomographic reconstruction capabilities. In this case, the penalization parametersβ andδ were

selected after conducting an exhaustive search for the values which minimize the global MSE; such an

operation would not be possible in practice. Both in terms of global MSE and visual quality, the Haar-

and wedgelet-based MPLE estimates are comparable to this optimistic SPS estimate. This implies that

the Haar- and wedgelet-based MPLEs may out-perform the SPS algorithm if the penalties were selected

in a more sophisticated manner (e.g., cross-validation methods, user-interaction). These favorable results

encourage further study of the effect of different initialization and penalization schemes on reconstruction

quality. For example, level-dependent penalization [50] is a common practice in inverse problems such as

tomography, and its application to Haar- and wedgelet-based MPLEs could further improve reconstructed

image quality.

VI. CONCLUSIONS ANDONGOING WORK

This paper introduced the platelet representation for the analysis, denoising, and reconstruction of

photon-limited medical images. Platelets can outperform conventional wavelet representations because

of their ability to approximate smooth boundaries more efficiently than wavelets. Moreover, because the

platelet analysis of Poisson distributed images is tractable and computationally efficient, existing image

deblurring and tomographic reconstruction methods based on expectation-maximization algorithms can

be easily enhanced with platelet-based complexity penalties with only a modest increase in computational
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complexity. Experimental results with real and simulated data from confocal microscopy and nuclear

medicine demonstrate that platelet-based methods can outperform (by achieving lower globalL2 errors)

the popular and widely used stopped EM-MLE method.

The platelet-based MPLE has an important theoretical strength over more conventional approaches like

the stopped EM-MLE and methods based on quadratic or non-quadratic roughness penalties or smooth-

ness priors. As discussed in Section IV, because platelets can accurately approximate images with a

very small number of terms, the platelet-based MPLE can have a very small bias (approximation error)

and variance (proportional to the number of terms in the platelet representation). Although the conven-

tional methods mentioned above have been studied extensively with experiments on simulated and real

data and have been demonstrated to provide high quality image reconstructions, we are not aware of any

comparable theoretical results for these methods. Certainly, very little is known about the theoretical

error performance of MPLEs based on standard quadratic or even non-quadratic edge preserving rough-

ness penalties for the class of images we considered in our platelet analysis. Even less is known for

the stopped EM approaches. It may be possible to compare MPLEs using quadratic roughness penalties

with those based on platelets. Quadratic roughness penalties can be interpreted as a penalty weighting

applied to a Fourier expansion of the intensity. We have demonstrated theoretically that platelet approx-

imations to piecewise smooth intensity functions can significantly outperform Fourier approximations.

Thus, platelet-based MPLE may produced better numerical results than those of quadratically roughness

penalized MPLEs.

In contrast, it should be possible to quantify the theoretical error performance of the platelet-based

MPLE very precisely. In [29] we show that the Haar-based MPLE is near minimax optimal when the

underlying Poisson intensity belongs to Bounded Variation or Besov function spaces [34]. These spaces

are characterized by mostly smooth images with isolated point singularities. Our interest in this work

is in images with singularities along smooth curves (edges and boundaries) rather than at points, and

we expect that improved minimax bounds can be obtained for our platelet-based MPLE in such cases.

We are currently pursuing this work. Minimax error bounds should be obtained relatively easily in the

denoising context (applications without a blurring or projection operator). Inverse problems like the
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tomography case are more challenging to analyze, but in related problems with Gaussian noise, wavelet-

based approaches have been shown to be near minimax optimal [50, 52]. We are investigating similar

approaches to the Poisson deblurring and tomography problems examined in this paper. The platelet

approximation results of this paper are a key first step in this direction.

In addition to the ongoing theoretical analysis of the platelet-based MPLE, extensive experimental

comparisons between it and competing methods are essential. This includes more extensive experiments

with real and synthetic data, receiver-operating-characteristic (ROC) studies [53], and clinical evalu-

ations. Based on our theoretical analysis and initial experimentation presented here, we believe that

platelet-based MPLEs may be quite competitive with state-of-the-art methods [48]. This, coupled with

the tractable theoretical analysis of the platelet paradigm discussed above, may make it a very attractive

tool for medical imaging applications.

Finally, the spatial adaptivity of platelet-based MPLE reconstructions has potential implications on the

design of photon-limited imaging systems. Most existing imaging systems bin photon events, placing

a lower limit on the achievable spatial resolution. The message of multisresolution approaches, such

as platelets, is that the spatial resolution of the reconstruction should not necessarily be uniform across

the image; multiresolution estimation algorithms “zoom-in” when the data indicate fine detail structures

like edges and “zoom-out” in regions that appear (statistically) smooth to reduce noise. In principle, the

multiresolution reconstruction algorithm, not the imaging system, should determine the proper balance

between resolution and SNRin a spatially adaptive manner. This suggests that an ideal photon-limited

imaging system would measure and record the location of each photon event as accurately as possible, and

then the reconstruction algorithm could adaptively determine the best resolutions in different regions of

the image. Platelet-based MPLE methods could be an effective tool in assessing the associated trade-off

between resolution and SNR.
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APPENDIX

I. PROOF OFAPPROXIMATION THEOREM

Proof of Theorem 1 It suffices to verify the theorem for dyadicm (powers of two); an error bound in the

general case follows in a similar manner. The proof is constructive. For the most part, we will not specify

the constants underlying the bounds discussed below and only speak in terms of orders of magnitude. It

is possible to keep careful track of the constants, but this would make the proof less transparent.

First consider approximating the boundary with aJ-scale (i.e., dyadic squares have sidelength greater

than or equal to2−J ) wedgelet partition. From [32] it is known that one can construct anO(m)-term

dyadic wedgelet partition such that the boundary is completely contained in disjoint dyadic squares of

equal sidelength1/m. To sketch the idea, imagine tiling[0, 1]2 with m2 dyadic squares of sidelength

1/m. Because the boundary function is Hölderα(Cα), with α ∈ (1, 2], it must also be Lipschitz (i.e.,

Hölder1(C1), where the Lipschitz constantC1 may be smaller thanCα) it is easy to check that the

boundary passes through onlyO(m) of these squares. Merge all squares not containing the boundary into

larger dyadic squares (according to the RP associated with Haar analysis). It turns out that after merging

there are onlyO(m) squares in total. That is, there exists a constantC > 0 such that the total number of

squares is less than or equal toC m. It can be shown thatC ′ = 8(C1 + 2) will work [32], whereC1 is

the Lipschitz constant above. This result holds for2 ≤ m ≤ 2J .

Now consider the approximation of a wedgelet to the true boundary in one of the dyadic squares

above. Each such square can be broken into three regions, two regions in which the true boundary

and wedge boundary agree and one region where they disagree (area “between” the true boundary and

the wedge boundary). The area between the true boundary and the wedgelet boundary in a square is

O(m−(α+1)) at most. This is a simple consequence of the fact that the Hölderα(Cα) can be used to

bound theL∞ approximation error between the boundary functionH(x) and a line connecting the points

(i/m,H(i/m)) and ((i + 1)/m,H((i + 1)/m)), wherei/m and (i + 1)/m refer to the horizontal

boundaries of a given square. TheL∞ error bounds the area of the region in question using this line fit;

the error isO(m−(α+1)). Wedgelets do not use arbitrary vertices (e.g.,H(i/m)), but rather their vertices
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are restricted to equispaced pointsδ apart along the boundary of each square. This “quantization” effect

adds an additional amount of area to the region. This additional amount isO(δm−1).

Next we generate a new partition by subdividing all squares of sidelength larger than1/
√

m in the

O(m) wedgelet partition so that the new partition is a tiling of[0, 1]2 with dyadic squares having side-

length1/
√

m or less. This partition also hasO(m) regions. To see this, note that tiling[0, 1]2 with

squares of sidelength1/
√

m requiresm such squares, so the additional subdivision adds less thanm

additional squares to the originalO(m) regions in the wedgelet partition. TheL2
2 error on each square of

the partition just constructed above can be bounded above as follows.

First consider squares not containing the boundary (i.e., squares in smooth parts of the image). Recall

that px(z) is the Taylor polynomial of orderk for f(z) at pointx ∈ [0, 1]2. Because each square has

sidelength of at most1/
√

m, the mean value theorem allows us to bound above the approximation error

at any point(x, y) in the square:

|f(x, y)− p(x0,y0)(x, y)| ≤ Cβ

(
1√
m

)β

= O(m−β/2)

Since this holds for all(x, y) in the square, we have bounded theL∞ error. Thus theL2
2 error over each

such square isO(m−(β+1)) (i.e.,L∞ error squared× area).

Next consider squares containing the boundary. Each such square has a sidelength of1/m. According

to the wedgelet analysis above, the area between the true boundary and the wedge boundary in each

square isO(m−(α+1) + δm−1). (Since the image surface is inΣ2(β, Cβ), β ∈ (1, 2], it is also Lipschitz

and hence continuous and since the image has compact support, it must be bounded and therefore the

L2
2 error in this region isO(m−(α+1) + δm−1)). Select planar fits on the two wedges so that theL2

2

errors in the other two smooth regions of the square areO(m−2(β+1)) (the 2 in the exponent appears

because the sidelength isO(1/m) instead ofO(1/
√

m)). This gives a totalL2
2 error in each such square

of O(m−min(α+1,2(β+1))+δm−1). Combining the planar approximations on dyadic squares of sidelength

1/
√

m or less in the smooth parts of the image with the platelet approximation of the boundary on dyadic
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squares of sidelength1/m produces a totalL2
2 approximation error ofO(m−min(α,β) + δ). That is, the

squaredL2 approximation error is bounded above byKα,β (m−min(α,β) + δ), where the constantKα,β

depends onCα, Cβ, andC ′ defined above. In fact, this bound can be slightly improved since the squared

error contributed by the wedgelet quantization can be bounded more tightly [32] to be less than or equal

to δ, rather than the loose bound ofO(δ) we used above. Thus, the total squared error is bounded above

by K ′
α,β m−min(α,β) + δ.

II. PROOF OFCOMPUTATIONAL COMPLEXITY THEOREM

Proof of Lemma 1 It is easy to check that the log multinomial likelihood function is concave in its

parameters (ρ = T θ). To prove the lemma, we refer to Theorem 5.7 in [54], which states that ifT is a

linear transformation fromRN to RM , then, for each convex functiong on RM , the functiongT defined

by

(gT )(θ) ≡ g(Tθ)

is convex inθ onRN . This and the concavity of the multinomial log likelihood shows that

L(x|θ) ≡ log Multinomial (x |T θ)

is concaveθ.

Proof of Theorem 2 In order to calculate a Haar MPLE, one may obtain the sums of the counts in each

dyadic square by performing a Haar wavelet analysis, which requiresO(N2) calculations. Once the

tree has been built with these parameters, the tree-pruning takes onlyO(N2) operations, yielding a total

complexity ofO(N2).

For wedgelets, note that there areO(N2) possible wedgelets to consider for anN × N pixel image.

Direct calculation of the log likelihood for each wedgelet term requiresO(N2) operations. The overall

number of computations would then beO(N4). This number can be significantly reduced by carefully

considering the impact of calculating the likelihood for each possible wedgelet in a sequential order.

Consider two possible wedgelets, one dividing the image into regionsA1 andB1, and the other dividing
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the image into regionsA2 andB2, which are constructed so that the boundary separatingA1 andB1 is

different from the boundary separatingA2 andB2 by only one pixel sidelength in one coordinate of one

boundary endpoint. This is depicted in Figure 13. The two wedgelets are very similar; in fact, the number

of pixels which are common to both regionsA1 andB2 or A2 andB1 may be bounded as follows: since

the sidelength of the image is 1 and therefore the sidelength of each pixel is1/N , the image area between

the two boundaries is upper bounded by1/(2N). Since the area of each pixel is1/N2, we have that the

number of pixels which are in both regionsA1 andB2 orA2 andB1 is ofO(N/2). Because the likelihood

function is additive, once the likelihood of the image being separated into regionsA1 andB1 has been

calculated, we need onlyO(N/2)operations to calculate the likelihood of the image being separated into

regionsA2 andB2.

The complete complexity calculation must consider the number of likelihood calculations at each level

of the quad tree described above. At the coarsest scale, there is one block containingN2 pixels and

N2 possible wedgelets, resulting inO(N3) operations for that level. On the second level, there are

four blocks containingN2/4 pixels each atN2/4 possible wedgelets for each, resulting in1
2O(N3)

operations for that level. This sequence continues, and is upper bounded byO(N3) ·
∑∞

i=0

(
1
2

)i
, or

2 O(N3) for the entire image. Such a simplification is not possible when numerically searching for the

maximum (multinomial) likelihood platelet fit, since all data in a given square are necessary to perform

the search. Performing this search results in anO(N4) algorithm. An approximate platelet fit can be

constructed using least-squares. Although this is suboptimal, our experimental results demonstrate it is a

close approximation to the optimal platelet. Using the least squares approximation has the advantage of

reducing the total number of operations toO(N3). The statistics of the data needed to calculate the least

squares platelet fit are
∑

i,j xi,j ,
∑

i,j i ·xi,j ,
∑

i,j j ·xi,j , where the sums are over the indices of pixels in

the square or wedge under consideration (the individual data are not required). As in the wedgelet case,

these statistics may be updated for each sequential platelet inO(N) operations. As before, this coupled

with the quad tree structure yields a total complexity ofO(N3).
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Fig. 8. Denoising in nuclear medicine. (a) “Raw” nuclear medicine cardiac image (64 × 64 pixels). (b) Haar-
based MPLE,γ = 1

5 log(#counts). (c) Platelet-based MPLE,γ = 1
5 log(#counts). (d) Haar-based MPLE,

γ = 1
5 log(#counts), averaged over 25 shifts. (e) Platelet-based MPLE,γ = 1

5 log(#counts), averaged over 25
shifts. (f) “Raw” nuclear medicine spine image (256 × 256 pixels). (g) Haar-based MPLE,γ = 1

5 log(#counts).
(h) Platelet-based MPLE,γ = 1

5 log(#counts). (i) Haar-based MPLE,γ = 1
5 log(#counts), averaged over 25

shifts. (j) Platelet-based MPLE,γ = 1
5 log(#counts), averaged over 25 shifts.
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Fig. 9. Confocal microscopy simulation. (a) Phantom (128 × 128 pixels). (b) Best EM-MLE restoration. (c)
Best EM-MLE (zoomed). (d) Blurred and noisy phantom. (e) Hereditary Haar MPLE (averaged over3 × 3
shifts). (f) Hereditary Haar MPLE (zoomed). (g) Error decay by iteration. (h) Platelet MPLE (averaged over
3 × 3 shifts), (i) Platelet MPLE (zoomed). In all cases,γ = 1

5 log(#counts) and convergence was declared when
||λ(i+1) − λ(i)||2/||λ(i)||2 < 10−5 (14 iterations in this case).
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(a) (b)

(c) (d)

Fig. 10. Confocal microscopy application. (a) Raw data (64 × 64 pixels). (b) EM-MLE restoration after 30
iterations. (c) Haar-based MPLE (averaged over3×3 shifts). (d) Platelet-based MPLE (averaged over3×3 shifts).
In these cases,γ = 1

5 log(#counts) and convergence was declared when||µ(i+1) − µ(i)||2/||µ(i)||2 < 10−4 (30
iterations in this case).

(a) (b)

Fig. 11. (a) fbp init MSE = 0.0382. (b) fbp then cg init MSE = 0.0371
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(f)

Fig. 12. Tomography simulation. (a) Shepp-Logan phantom (64× 64). (b) Best EM-MLE reconstruction (stopped
at 14 iterations which gave the minimum global squared error reconstruction); MSE = 0.0461. (c) Non-hereditary
Haar-based MPLE (averaged over5 × 5 shifts); MSE = 0.0387. (d) Wedgelet-based MPLE (averaged over5 × 5
shifts); MSE = 0.0394. (e) Error vs. iteration for MLE, Haar-based MPLE, and wedgelet-based MPLE. (f) Best
PWLS-SPS reconstruction; MSE = 0.0382. In all cases,γ = 1

50 log(#counts) and convergence was declared
when||λ(i+1) − λ(i)||2/||λ(i)||2 < 10−5 (roughly 25 iterations in these cases.) Note that some edges inside the
Shepp-Logan phantom are sharper and more pronounced in the wedgelet reconstruction than in the Haar or MLE
reconstructions.
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Fig. 13. Sequential calculation of wedgelet likelihoods


